Name: \qquad Section: \qquad

Right Sums

We have a couple of different ways to write down R_{n}.
We will generally choose the most appropriate tool for the type of problem we are working with.

1. Intuitively and Graphically: in Right Sums, the rectangle hits the curve at its right endpoint.

$$
\begin{aligned}
R_{n} & =(\text { height of rect } 1) \Delta x+(\text { height of rect } 2) \Delta x+\cdots+(\text { height of rect } \mathrm{n}) \Delta x \\
& =f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x
\end{aligned}
$$

2. Concisely: $R_{n}=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$
3. When computing R_{n}, find $\Delta x=\frac{b-a}{n}$ and compute $x_{1}, x_{2}, \ldots, x_{n}$ where $x_{i}=a+i \cdot \Delta x$.

$$
\begin{aligned}
R_{n} & =f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x \\
& =\Delta x\left(f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)\right)
\end{aligned}
$$

Left Sums

We also have several ways to write L_{n}.

1. Intuitively and Graphically: in Left Sums, the rectangle hits the curve at its left endpoint.

$$
\begin{aligned}
L_{n} & =(\text { height of rect } 1) \Delta x+(\text { height of rect } 2) \Delta x+\cdots+(\text { height of rect } \mathrm{n}) \Delta x \\
& =f\left(x_{0}\right) \Delta x+f\left(x_{1}\right) \Delta x+\cdots+f\left(x_{n-1}\right) \Delta x
\end{aligned}
$$

2. Concisely: $L_{n}=\sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x$
3. When computing L_{n}, find $\Delta x=\frac{b-a}{n}$ and compute $x_{0}, x_{1}, \ldots, x_{n-1}$ where $x_{i}=a+i \cdot \Delta x$.

$$
\begin{aligned}
L_{n} & =f\left(x_{0}\right) \Delta x+f\left(x_{1} \Delta x+\cdots+f\left(x_{n-1}\right) \Delta x\right. \\
& =\Delta x\left(f\left(x_{0}\right)+f\left(x_{1}\right)+\cdots+f\left(x_{n-1}\right)\right)
\end{aligned}
$$

The Midpoint Rule

In the midpoint rule, the rectangle hits the curve in the middle. The $i^{t h}$ interval is $\left[x_{i-1}, x_{i}\right]$. The midpoint of this interval is written $\bar{x}_{i}=\frac{x_{i-1}+x_{i}}{2}$.

1. Concisely: $M_{n}=\sum_{i=1}^{n} f\left(\bar{x}_{i}\right) \Delta x$
2. When computing M_{n}, find $\Delta x=\frac{b-a}{n}$, find $x_{0}, x_{1}, \ldots, x_{n}$, and average them to find $\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}$.

$$
\begin{aligned}
M_{n} & =f\left(\bar{x}_{1}\right) \Delta x+f\left(\bar{x}_{2}\right) \Delta x+\cdots+f\left(\bar{x}_{n}\right) \Delta x \\
& =\Delta x\left(f\left(\bar{x}_{1}\right)+f\left(\bar{x}_{2}\right)+\cdots+f\left(\bar{x}_{n}\right)\right)
\end{aligned}
$$

