Math 1131

Name: _

Section: $_$

Right Sums

We have a couple of different ways to write down R_n .

We will generally choose the most appropriate tool for the type of problem we are working with.

1. Intuitively and Graphically: in Right Sums, the rectangle hits the curve at its **right** endpoint.

$$R_n = (\text{height of rect } 1)\Delta x + (\text{height of rect } 2)\Delta x + \dots + (\text{height of rect } n)\Delta x$$

= $f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x$

- 2. Concisely: $R_n = \sum_{i=1}^n f(x_i) \Delta x$
- 3. When computing R_n , find $\Delta x = \frac{b-a}{n}$ and compute x_1, x_2, \ldots, x_n where $x_i = a + i \cdot \Delta x$.

$$R_n = f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x$$
$$= \Delta x \Big(f(x_1) + f(x_2) + \dots + f(x_n) \Big)$$

Left Sums

We also have several ways to write L_n .

1. Intuitively and Graphically: in Left Sums, the rectangle hits the curve at its **left** endpoint.

$$L_n = (\text{height of rect } 1)\Delta x + (\text{height of rect } 2)\Delta x + \dots + (\text{height of rect } n)\Delta x$$
$$= f(x_0)\Delta x + f(x_1)\Delta x + \dots + f(x_{n-1})\Delta x$$

- 2. Concisely: $L_n = \sum_{i=1}^n f(x_{i-1}) \Delta x$
- 3. When computing L_n , find $\Delta x = \frac{b-a}{n}$ and compute $x_0, x_1, \ldots, x_{n-1}$ where $x_i = a + i \cdot \Delta x$.

$$L_n = f(x_0)\Delta x + f(x_1\Delta x + \dots + f(x_{n-1})\Delta x)$$
$$= \Delta x \left(f(x_0) + f(x_1) + \dots + f(x_{n-1}) \right)$$

The Midpoint Rule

In the midpoint rule, the rectangle hits the curve in the **middle**. The i^{th} interval is $[x_{i-1}, x_i]$. The midpoint of this interval is written $\bar{x}_i = \frac{x_{i-1}+x_i}{2}$.

1. Concisely: $M_n = \sum_{i=1}^n f(\bar{x}_i) \Delta x$

2. When computing
$$M_n$$
, find $\Delta x = \frac{b-a}{n}$, find x_0, x_1, \ldots, x_n , and average them to find $\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_n$.

$$M_n = f(\bar{x}_1)\Delta x + f(\bar{x}_2)\Delta x + \dots + f(\bar{x}_n)\Delta x$$
$$= \Delta x \Big(f(\bar{x}_1) + f(\bar{x}_2) + \dots + f(\bar{x}_n) \Big)$$